
Can Pipe-and-Filters architecture help creativity in Music?
Rômulo Vieira1, Flávio Luiz Schiavoni1

1 Arts Lab in Interfaces, Computers, and Everything Else - ALICE
Federal University of São João del-Rei - UFSJ

São João del-Rei - MG - Brazil

Abstract. Ubiquitous Music is an emerging field of study that addresses how
human agents can use computing, in the most diverse ways, to create music,
an activity that is characterized by pragmatic and epistemic actions, restricted
by natural and social means. In addition, this area of expertise seeks to create
tools that support creativity. Thus, this paper discusses how the Pipe-and-Filters
architecture, common in software development, can help in creativity and mu-
sic creation, either by being present in applications that exploit this, or by the
logical way in which it is structured.

1. Introduction
A striking feature of Ubiquitous Music is that all agents in a music performance must
be able to influence sound results [Keller et al. 2010]. It includes the audience’s mem-
bers, normally lay-musicians, taking part of the performance and the creative process
of music making. It should also be noted that this technique helps in making music
a social activity, without pre-defined roles, placing experts and novices side by side
[Schiavoni and Costalonga 2015].

The inclusion of everyone in the creative process of music is certainly a task that
can bring several challenges to be executed. Among its challenges are: assisting cre-
ativity, facilitating laypeople-musician interaction and interaction on fixed and portable
devices. There are also ethical dilemmas, such as participation, inclusion, human devel-
opment and sustainability involved in the decision of taking people as part of a musical
presentation [Keller 2017].

To define and understand what creativity is has motivated researchers over the
time. Although he was not the first to explore the subject, J. P. Guilford, then president of
the American Psychological Association, is considered a pioneer in this type of research.
Later, new researchers such as Margaret Boden, Ronald Beghetoo, James Kaufmann and
Cecı́lia Salles added new topics to the discussion [Beghetto and Kaufman 2007].

Boden [Boden 1991] defines creativity as “the ability to come up with ideas or
artefacts that are new, surprising and valuable”. She also attributes the characteristic as
a natural condition of human beings, as well as thinking, perception and self-criticism.
From there, she divides creativity into two fields: Psychological creativity (P-creativity)
and Historical creativity (H-creativity). The first term is defined as a surprising, valuable
and unprecedented idea for the person, even if it is a concept already known. As for H-
creativity, it is defined as something new in human history [Boden 1991].

Within these two concepts, three other new forms of creativity emerge: ex-
ploratory, transformational and combinational. The first one involves making un-
known combinations of familiar ideas. These new combinations can be generated de-
liberately or not, but in all cases creating this combination requires a rich reserve of

109



knowledge. The most common examples are poetic images, collages in paintings and
analogies. The second way involves the transformation of already structured concepts of
thought. They are usually from social group and religion, being occasionally affected by
other cultures. But in both cases, they are there, they are not originated by an individual
mind. Finally, the combinational structure, as the name implies, involves the combination
of already familiar thoughts, again influenced by culture and social group [Boden 1991].

Beghetto and Kaufman [Beghetto and Kaufman 2007] define creativity as “the
ability to produce innovative (that is, original, unexpected), high quality and appropriate
work”. The authors further divide this field into four parts: eminent creativity (Big-c),
which requires specialized knowledge and aims at creating professional products such as
works of art or scientific theories; professional creativity (pro-c), which also requires
specialized knowledge but whose result of the creative process does not have the same
impact as eminent creativity; everyday creativity (little-c), which uses day-to-day expe-
riences to generate creative products, and personal creativity (mini-c), characterized by
internal, subjective and emotional aspects but which does not necessarily aim at artistic
products.

With regard to music creation, Bennett [Bennett 1976] divides the creative process
into five stages and an independent final part of revision. The stages are: germinal idea,
sketch, first draft, elaboration and refinement and final draft copying. The indepen-
dent internship is the review of all the process (Figure 1).

Figure 1. Creative flow elaborated by Bennett [Bennett 1976].

In this way, the process is triggered by a twin idea that expands to a first sample of
the composition. At this point, Bennett suggests that a review of the initial idea already
sets up a new draft, modifying the first idea. The material is then elaborated and improved,
leading to the final composition. Once the work is finished, further revisions can be made.

110



A point worth mentioning in the model is that backtracking is considered part of the
creative process [Bennett 1976].

Keller and others [Keller et al. 2014], after reviewing eight models of creativity
in music production, identified three points of relationship with the dimensions of cre-
ativity, namely: materials, procedures and context. From this, they identified flaws in
the methods of application in music, such as domain restriction and lack of material and
social reasoning. Thus, they emphasize that the availability of resources interferes with
the creative process.

A common option to face these challenges is to use computer and technologies
to integrate people in creative tasks. It is also known that the computer has long been
considered an extremely attractive tool for creating, manipulating and analyzing sounds.
Its precision and potential for automation make it a useful platform for expression and
experimentation. However, it is a fact only to the extent of what we are able to express to
the computer to do and how to do it. In view of this reality, the most diverse environments
appear to help in the creation and execution of music, including those aimed at lay people,
both in the field of music and in the field of computing.

Maybe it is possible to identify a common architecture of these systems, called
Pipe-and-Filters, presented in Section 2. In this section we present several examples of
how this system architecture can be used to create complex applications combining simple
parts of code, from the Unix Shell to sound processing.

At the end, in Sections 3 and 4, we present some discussion about how program-
ming environments, in particular Mosaicode, can help the creativity and the creation of
ubiquitous music and what were the conclusions and experiences resulting from this work.

2. The Pipe-and-Filters architecture
According to IEEE, software architecture is defined as a fundamental organization of
a system and its components and the relationship between itself and the environment
that guide its design and evolution. In short, architecture is about how is the interaction
between components and not how they are implemented [Maier et al. 2001].

Nowadays, applications are becoming larger, more integrated with other applica-
tions and uses to use a wide variety of technologies. It is in this context that the software
architecture is very important. A good architecture works to guarantee the quality of the
software product, as well as its reliability and usability. In addition, it serves as a means
of communication between the entire stakeholder, represents the initial decisions of the
project, is the basis for detailing a work and can be a unit for reuse, which means that your
model can be transferable between systems [Bijlsma et al. 2011, Agostini et al. 2019].

There are different types of software architectures, such as: Data Abstraction and
Object-Oriented Organization, Event-based, Implicit Invocation, Layered Systems and
Pipe-and-Filters. The Pipe-and-Filters architecture, focus of this paper, is a division of a
complex task into several sub tasks, implemented by a software component called filters.
Filters have multiple inlets and outlets connected to pipes, but never know the charac-
teristics of adjacent filters. The pipeline, on the other hand, is responsible for perform-
ing the communication between two software components and acting as data buffers be-
tween the adjacent filters. The logical functioning of this model can be seen in Figure 2

111



[Bijlsma et al. 2011, Avgeriou and Zdun 2005].

Figure 2. Pipe-and-Filters example [Bijlsma et al. 2011].

The pipe connector is considered to be a key part of the data flow transfer. Because
of this, flexibility at the moment of connection is one of the main characteristics of this
architecture, as it allows customized assemblies for each specific problem. With regard to
data transfer, the flow is constant [Medvidovic and Taylor 2010, Bass et al. 2003].

This type of pattern is very popular and, because of that, adopted in several sys-
tems, mainly to manipulate different sets of data in different ways. The use of this model
is advisable when little contextual information needs to be kept between the components
and the filters are not able to maintain their states. They can still be an alternative to
other architectures or work together with them. More directly, they are widely adopted in
compilers and the UNIX shell, sound processing and sound programming.

2.1. The UNIX Shell

Created in the 1970s, for minicomputers and mainframes, the UNIX system has become
increasingly popular and has moved to workstations and personal computers, going well
beyond the use of it by academics or specialists. During that period, he also received
several nomenclatures for variations, such as Ultrix, Xenix and Linux [Newham 1998].

In general, the shell is any interface that receives commands or text scripts from
the user and converts them in instructions understandable to the operating system. Users
typically interact with a Unix shell using a terminal emulator, however, direct operation
via a serial hardware connection, or computer network session is common for server sys-
tems. The shell, in turn, provides basic commands, such as chaining, command substi-
tution, control structure and conditional testing. These commands, also known as tools,
do everything from counting the number of lines in a file, sending electronic mail, to
displaying a calendar for any desired year [Newham 1998, Salus 1994].

Another advantage of UNIX shell is that it allows effective connection of simul-
taneous commands. This connection precisely follows the Pipe-and-Filters architecture.
Therefore, it allows the output of one command to be directly connected to the standard
input of a second command [Salus 1994, Rosen et al. 2007].

Here, filter terminology refers to any program that can receive input data and then
perform some action on that input and send it to the output to be connected in another
filter. More clearly, a filter is a desirable change that can occur in the communication
between two programs in a pipeline. This makes shell programming extremely useful,
providing a variety of tools for programmers and system administrators.

112



2.2. Pipe-and-Filters in sound processing
The spread of this architecture, or at least its main concept, was so vast that it also reached
the field of sound processing. Take the famous Moog synthesizer (Figure 3) as an exam-
ple. Created in 1964, this instrument was initially monophonic, with a reduced synthesis
capacity, providing easy operation by the user, whether he is a musician or not. This fea-
ture of the instrument is analogous to the pipeline, where data is sent from a source to
another [Trocco and Pinch 2004].

Figure 3. Early version of the Moog Modular [Trocco and Pinch 2004].

Another outstanding feature of this synthesizer is its constitution by separate mod-
ules and with specific functions, such as generating an envelope, oscillating the frequency
of a note and applying a reverb to the sound. These functions are analogous to filters, capa-
ble of applying modifications to the data transmitted by the pipes, in this case, the cables
physically connecting different unities. In this way, infinite possibilities have emerged
with regard to the creation of sounds and music [Trocco and Pinch 2004].

In sound processing, Pipe-and-Filters architecture is not limited to synthesizers
and it is present in several other situations. Effects pedals and pedalboards (Figure 4) for
electric guitars work in the same way, that is, audio data generated by the resonance of
the strings flows through cables until they reach the pedals. Then, data goes through an
electrical circuit that changes the sound of the instrument. After transformation, data is
sent to another pedal via another cable until it reaches the amplifier. Each transmission
is carried out through a pipeline and each change in sound by a filter [Roberts 2019,
Hunter 2013].

When concerning audio in studios and concerts, the same idea is present. A lot
of sound sources, like microphones and instruments are connected by pipes, in this case,
audio cables. The data is the audio signal and several different devices, like direct boxes,
compressors, equalizers, and noise gates, act like filters changing the audio signal. The
mixer receives all the pipes and connect them in a complex system, allowing inserts,
effects and other filters to be connected. Sometimes, a patch bay is present to simplify
the addition or removing of a new component. As an example of the pipes and filters
architecture, in this system a audio processing unit is included in the mesh and does not
know what is after or before it in the audio chain.

113



Figure 4. Pedalboard, a set of guitar pedals [Roberts 2019].

2.3. Pipe-and-Filters to music programming

Part of the musical creation can be done based on this architecture, especially using en-
vironments or languages of music programming. Even though it is not so explicit, Pipe-
and-Filters is present in audio programming languages and environments, such as Pure
Data, FAUST, SuperCollider, ChucK, and Mosaicode, for instance. For laymen, both
in music and in programming, the advantage is that they can create something from the
interconnection, combination and alteration of components, as well as their parameters.

Pure Data (Figure 5) is a graphical interface for real-time programming of audio
and video. Its functionality is directed at an interaction similar to manipulating objects in
the real environment, moving and connecting them in order to generate new combinations.
For this, the language uses the interconnection of boxes that contain some command,
forming a flow of information. At this point that it correlates with the Pipe-and-Filter,
since the output from one control box will serve as an input to another box, and yet, the
data undergoes some change by a filter. Pure Data can be found in several applications,
like Reactable, a musical interface aimed at creating collaborative music, RJDJ app and
the Networked Resources for Collaborative Improvisation (NRCI) library [Puckette 1998,
Puckette 2011].

Functional AUdio STream, popularly known as FAUST, is a high-level lan-
guage, focused on digital signal processing, with special support for real-time au-
dio applications and plugins on various software platforms, including mobile systems.
Among its advantages are: easy creation and reading of command blocks, support for
Graphical User Interface (GUI) and generation of C ++ code from the created blocks
[Michon and Smith 2011, Michon et al. 2019]. Its function is to describe a signal proces-
sor, which applies a mathematical equation to the input signals to produce output signals.

114



Figure 5. Pure Data interface.

The functional programming approach provides a natural framework for signal process-
ing. Digital signals are modeled as discrete functions of time and signal processors as
second order functions that operate on them. It can generate code to the most diverse plu-
gin architecture, including formats such as LADSPA, MAX/MSP and VST, in addition to
mobile applications for Android and iOS [Smith 2011, Letz et al. 2010].

SuperCollider is an object-oriented language, with a focus on algorithmic com-
position and audio synthesis, requiring the least possible effort. Its main characteristic is
to transform musical concepts into functions or methods, creating music from the manip-
ulation of these elements through blocks, as well [Wilson et al. 2011]. Among its main
qualities are dynamism and brevity. The dynamism allows the user to create structures
that generate events in a nested way. Patches can be built dynamically and parameterized
not only by floating point numbers, but also by other unit generator graphics. The patch
can also be built algorithmically in real time [McCartney 1998]. Since SuperCollider is a
Object-oriented programming language, it can be an example of the combination of two
architectures, Object-Oriented as a programming paradigm and Pipes-and-Filters as the
flow of audio data.

Another language focused on live coding, composition and performance in real
time is ChucK. Its objective is to be proactive and interactive to the user, however, this
causes some restrictions, such as less absolute performance. In addition, ChucK presents
a highly visible and centralized view of logical time (via keyword) that reconciles logi-
cal time with real time. Another highlight is the ability to edit the code while the pro-
gram is running [Wang 2008, Wang and Cook 2003]. ChucK natively supports multiple
simultaneous and dynamic control rates and the ability to add, remove and modify code
on-the-fly, and its application ranges from algorithmic composition to sound synthesis,

115



recording and visual effects display. As a whole, ChucK allows the programmer to write
code quickly and easily to synchronize and communicate with input devices. It can be a
good tool for easy use or the rapid prototype of new controllers, or for writing network
code or synchronization. This programming language has been used in performances
by the Princeton Laptop Orchestra (PLOrk) and for developing the musical applications
[Wang 2008, Dean 2009].

Mosaicode is an open-source programming environment, created by a group of
researchers at the Federal University of São João del-Rei, Brazil. Focused on a visual
environment, this tool is used for development of systems common to digital art and mu-
sic in web browsers, extending its use to mobile devices [Schiavoni and Goncalves 2017,
Schiavoni et al. 2018a, Schiavoni et al. 2018b]. The similarity with the other techniques
is in the fact that it also uses blocks and connections to create a complex code, inspired
in the Pipe-and-Filters architecture. A block represents a single unity of code in the
system and it can have static and dynamic properties. The dynamic properties is repre-
sented by an input port. The output processing is represented by an output port. These
ports define the programming data flow and can be connected like presented in Figure 6
[Schiavoni and Goncalves 2017, Schiavoni et al. 2017].

Figure 6. Block interconnection in Mosaicode.

However, Mosaicode is not an environment for interpreting code, but for generat-
ing it from the combination of blocks created by the user. A code generated in the tool is
shown in Figure 7.

3. Discussion

To try to ensure the participation of lay-programmers and lay-musicians in creative pro-
cess, we propose to use the Pipes-and-Filters architecture in this process. Thus, the cre-
ation of a complex music, piece or instrument can be done combining a set of simple
objects, the Filters. In this case, we are understanding it in a general way, and it does
not matter if one can use guitar pedals, Moog devices, SuperCollider code or Pure Data
objects.

Each Filter has a internal configuration, just like the parameters passed to a shell
command, the parameters passed to a code function or the knobs and buttons present in a
studio compressor, a Moog box or in a guitar pedal. Sometimes we can have a single data
type and a single pipe type, like in Unix shell, or different pipes with different data type,

116



Figure 7. Example of JavaScript source code of a webaudio application gener-
ated by Mosaicode.

like in Pure Data and Mosaicode. The creativity task here is to combine a set of Filters to
create an art piece.

A good point to start thinking about creativity and Pipes-and-Filters it that the
creation of a complex program in this architecture is based on the combination of a set of
less complex filters. Thus, the basic idea is to reuse components that are already known,
combining them and using their predefined feature to compose a new idea.

Using the concepts presented by Boden, the Pipe-and-Filter architecture can be
used in the three forms of creativity, starting with the exploratory form. Exploratory
creativity involves making unprecedented combinations of familiar ideas. This model can
be highly explored in a Pipe-and-Filters system where the familiar ideas are the Filters and
the possibility to combine them is the main form of programming. In this context, music
creation tools redefine the use of this architecture, assigning its concepts to a completely
different field.

In transformational creativity, Pipe-and-Filter is no longer just a hidden part of
the software, to appear graphically to the user, allowing one to create and manipulate the
system inputs, encapsulate them in pipes and modify them through filters, just like in
Mosaicode and Pure Data. Thus, they are still able to create a new parameter, since the
application provides a code from the block interconnections.

In the combinational structure, the concept of combining different ideas is much
broader than in the previous ones. For those who are only initiated in computing, they
have already encountered this form of command in their field of action and now they are
faced with the technique for creating music. For those who are musicians, the applica-
tion of filters to input signals occurs on guitars, synthesizers and other electro-acoustic
instruments. For those who are laymen in both subjects, they have certainly come across
equipment that needed a correct fit to work, especially since this is a recurring activity
for children, such as assembling puzzles or Lego pieces. Thus, common ideas are used to
create music as well.

The division of creativity forms, presented by Beghetto and Kaufman
[Beghetto and Kaufman 2007] can be useful to understand how Pipes-and-Filters can help

117



creativity and also gives a clue about teaching and learning based on this architecture.
Maybe it is possible to understand that the main difference between an agent that can be
considered a Big-c and an agent classified as mini-c is the knowledge about how to create
a product. In a Pipe-and-Filters system, this knowledge can be understood as how many
filters do you know and how deep do you know their features. Certainly, a Pure Data user
that knows hundreds objects should not be classified as more creative user than a user that
knows a few, but certainly it is possible to classify them as a more expert user and a less
expert based on it. Thus, it is possible to define a learning process dividing it in learning
several filters and how to combine them.

The creative process presented by Bennett [Bennett 1976], divided into five main
stages can also be helped by a Pipe-and-Filters architecture and concept. In this case,
the refinement stage and the sketch can be done adding, reordering and removing filters,
keeping the main idea and infrastructure and changing components of the final product.
Also, it is possible to reuse parts of the systems in other works and to divide the creative
process in several tasks, just like in Pipe-and-Filters architecture.

As for the programming languages that use this architecture to create code and
consequently music, some peculiar characteristics to each type emerge. Pure Data, for
example, has a similar approach to the real world of audio stomp boxes, where the con-
nection of elements in a given order will result in a new value, in addition to being aimed
at real-time collaboration between networks and live coding. FAUST, in turn, is marked
by not describing a sound or a group of sounds, but rather a signal processor, often in the
form of a plugin or standalone application. SuperCollider is characterized by the gener-
ation of audio synthesis and algorithmic composition in real time through functions and
methods. ChucK is also focused on audio synthesis, composition and performance, but
it presents the differential of privileging flexibility over performance. Finally, Mosaicode
can be defined as a visual programming language and a domain-based language, which
allows the user to develop systems using two-dimensional notation and interaction with
code through graphics, in addition to developing systems within a well-defined scope.

4. Conclusion

This paper proposes to analyze how Pipe-and-Filters can help in the creation of Ubiq-
uitous Music by people without musical or technological knowledge. Applications built
from this architecture, or with a similar operating logic, were presented, such as Moog
synthesizers and guitar pedals, beyond that which assist in musical composition, such as
Mosaicode, Pure Data and FAUST.

Among the creative processes, this structure of sending and manipulating data
correlates with exploratory, transformational and combinational types. In short, it is a
technique that supports the tools used to generate some type of art and also composes the
creative method to perform this task.

The various forms of creativity focused on music are also taken into consideration
and, once again, Pipe-and-Filters can help so that more and more people can express
themselves through music, in a simple, playful and graphic (or sometimes textual) way.

To understand how creativity can be related to the combination of simple filters
to create a complex system is an interdisciplinary field of study and has an important

118



role in education, social and technological integration, the exploration of the most diverse
techniques helps in the growth of Ubiquitous Music, making it sustainable and accessible
to the most diverse people, from the most diverse social classes.

Acknowledgment

Authors would like to thanks to all ALICE1 members that made this research and devel-
opment possible. The authors would like also to thank the support of the funding agencies
CNPq, (Grant Number 151975/2019-1), CAPES (Grant Number 88887.486097/2020-00)
and FAPEMIG.

References

Agostini, A., Ghisi, D., and Giavitto, J. L. (2019). Programming in style with bach. In
International Symposium on CMMR,, pages 91–102.

Avgeriou, P. and Zdun, U. (2005). Architectural patterns revisited - a pattern language.
In EuroPLoP’ 2005, Tenth European Conference on Pattern Languages of Programs,
volume 81, pages 431–470.

Bass, L., Clements, P., and Kazman, R. (2003). Software Architecture In Practice, pages
23–726. Addison-Wesley Professional.

Beghetto, R. and Kaufman, J. (2007). Toward a broader conception of creativity: A case
for mini-c creativity. Psychology of Aesthetics, Creativity, and the Arts, 1:73–79.

Bennett, S. (1976). The process of musical creation: Interviews with eight composers.
Journal of Research in Music Education, 24(1):3–13.

Bijlsma, A., Heeren, B., Roubtsova, E., and Stuurman, S. (2011). Software Architecture.
Free Technology Academy.

Boden, M. (1991). The Creative Mind: Myths and Mechanisms. Basic Books, Inc., USA.

Dean, R. T. (2009). The Oxford Handbook of Computer Music. OUP USA.

Hunter, D. (2013). Guitar Effects Pedals: The Practical Handbook. Backbeat Books.

Keller, D. (2017). Challenges for a second decade of ubimus research.

Keller, D., Barreiro, D., Queiroz, M., and Pimenta, M. (2010). Anchoring in ubiquitous
musical activities. International Computer Music Conference.

Keller, D., Lazzarini, V., and Pimenta, M. (2014). Ubimus Through the Lens of Creativity
Theories, pages 3–23. Springer.

Letz, S., Orlarey, Y., and Fober, D. (2010). Work stealing scheduler for automatic paral-
lelization in faust. Linux Audio Conference.

Maier, M., Emery, D., and Hilliard, R. (2001). Software architecture: introducing ieee
standard 1471. Computer, 34:107 – 109.

McCartney, J. (1998). Continued evolution of the supercollider real time synthesis envi-
ronment. ICMC, page 4.

1https://alice.dcomp.ufsj.edu.br/

119



Medvidovic, N. and Taylor, R. (2010). Software architecture: Foundations, theory, and
practice. In Proceedings - International Conference on Software Engineering, pages
471–472.

Michon, R., Orlarey, Y., Letz, S., Fober, D., and Dumistracu, C. (2019). Mobile music
with the faust programming language. In International Symposium on CMMR, pages
371–382.

Michon, R. and Smith, J. O. (2011). Faust-stk: A set of linear and nonlinear physical
models for the faust programming language. Proceedings of the 14th International
Conference on Digital Audio Effects, pages 199–204.

Newham, C. (1998). Learning the Bash Shell. OReilly.

Puckette, M. (1998). Pure data: Recent progress. International Computer Music Confer-
ence.

Puckette, M. (2011). Pure Data. Pure Data Development Team.

Roberts, S. (2019). Your board: Joe coombs’ go anywhere session pedalboard.

Rosen, K. K., Host, D. A., Klee, R., and Rosinski, R. (2007). UNIX: The Complete
Reference, Second Edition. McGraw-Hill Education.

Salus, P. H. (1994). A Quarter Century of UNIX. Addison-Wesley Professional.

Schiavoni, F., Cardoso, T., Gomes, A., Resende, F., and Sandy, J. (2018a). Utilização do
ambiente mosaicode como ferramenta de apoio para o ensino de computação musical.
In 8th Workshop on Ubiquitous Music (UbiMus), pages 33–44.

Schiavoni, F. and Costalonga, L. (2015). Ubiquitous music: A computer science ap-
proach. Journal of Cases on Information Technology, 17:20–28.

Schiavoni, F. and Goncalves, L. (2017). From virtual reality to digital arts with mosaicode.
In 2017 19th Symposium on Virtual and Augmented Reality (SVR), pages 107–112.

Schiavoni, F., Gonçalves, L., and Gomes, A. (2017). Web audio application development
with mosaicode. In 16th Brazilian Symposium on Computer Music, pages 107–112.

Schiavoni, F., Gonçalves, L., and Sandy, J. (2018b). Mosaicode and the visual program-
ming of web application for music and multimedia. Revista Música Hodie, 18:132.

Smith, J. O. (2011). Audio signal processing in faust. Center for Computer Research in
Music and Acoustics (CCRMA) Publications, pages 1–54.

Trocco, F. and Pinch, T. (2004). Analog Days: The Invention and Impact of the Moog
Synthesizer. Harvard University Press.

Wang, G. (2008). The ChucK Audio ProgrammingLanguage “A Strongly-timed and On-
the-flyEnviron/mentality”. PhD thesis, Princeton University.

Wang, G. and Cook, P. (2003). Chuck: A concurrent, on-the-fly audio programming
language. In ICMC, page 8.

Wilson, S., Cottle, D., and Collins, N. (2011). The SuperCollider Book. MIT Press.

120


