
Sunflower: an environment for standardized communication of
IoMusT

Rômulo Vieira
romulo_vieira96@yahoo.com.br
Arts Lab in Interfaces, Computers,

and Everything Else - ALICE
Federal University of São João del-Rei

São João del-Rei, Brazil

Flávio Schiavoni
fls@ufsj.edu.br

Arts Lab in Interfaces, Computers,
and Everything Else - ALICE

Federal University of São João del-Rei
São João del-Rei, Brazil

ABSTRACT
The Internet of Musical Things (IoMusT) area, although recent, has
well-defined aspects concerning musical practice via the network.
However, several challenges are also present, from those related
to musical and artistic practice, even those dealing with environ-
mental and social issues. From a computational point of view, the
main dilemmas revolve around the lack of resources to deal with
heterogeneity and the lack of standard in the communication of the
devices that make up this scenario. Therefore, this paper presents
Sunflower, a tool inspired by the Pipes-and-Filters architecture that
allows communication between different objects, and focuses on its
usage protocol. Its layered structure is also presented, showing the
types of data, messages, and musical things present in each one of
them. After all, the tests and results that certify to the functionality
of this environment are demonstrated.

CCS CONCEPTS
• Networks → Network design principles; • Computer sys-
tems organization → Other architectures; • Information sys-
tems →Multimedia content creation.

KEYWORDS
Internet of Musical Things, Protocol definition, Pipes-and-Filters,
Sunflower environment, Network communication

ACM Reference Format:
Rômulo Vieira and Flávio Schiavoni. 2021. Sunflower: an environment for
standardized communication of IoMusT. In Audio Mostly 2021 (AM ’21),
September 1–3, 2021, virtual/Trento, Italy. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3478384.3478414

1 INTRODUCTION
The Internet of Things (IoT) is a field of study that receives sev-
eral definitions. Gershenfeld [6] indicates that this area deals with
everyday objects with the ability to connect to a data network,
capable of handling various devices and communication protocols
stacks. Atzori [1], in return, classifies the basic concept of IoT as

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
AM ’21, September 1–3, 2021, virtual/Trento, Italy
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8569-5/21/09. . . $15.00
https://doi.org/10.1145/3478384.3478414

the generalized presence of objects with common interests, capable
of interacting and cooperating. In conclusion, it can be said that the
Internet of Things relates the physical and virtual world through
network infrastructures and data collections.

Due to its versatility, IoT started to enter several fields of appli-
cation, such as supply chain management, the health sector, public
safety, and more recently, music [8].

When their domains are expanded to the practice of music, the
Internet of Musical Things (IoMusT) arises. This area that also
uses concepts from human-computer interaction, ubiquitous music,
new interfaces for musical expression, artificial intelligence, and
participatory art, is a network environment formed by physical or
virtual objects to produce or receive musical content. These objects
are the so-called Musical Things [18].

The main objective of IoMusT is to assist communication and
data exchange between musicians, audience members-musicians,
and audience members with other audience members in the context
of music creation. It also helps in conducting interactive and/or
immersive concerts, remote rehearsals, smart studio production,
and music e-learning [5, 10, 18].

Despite being an emerging field, IoMusT already haswell-structu-
red visions, but there are also challenges in this field. Among them,
we can mention the social and economic ones, resulting from the
appearance of new technologies, besides the environmental and the
artistic ones [18, 19]. From a computational point of view, one of
the main adversities relate to the lack of standardization between
protocols, data, and devices present in these environments [18].

Because of this problem, the authors propose a multilayer envi-
ronment, with an operation mode similar to the Pipes-and-Filters
architecture, to help in the communication and interoperability
of musical things, defining a protocol responsible for indicating
the format of messages, data types, and the behavior of devices
present in each layer. The main objective is to offer a new way of
structuring these ecosystems to allow gadgets with the most varied
features to communicate.

Beyond this initial goal, Sunflower intend to bring a few at-
tributes to IoMusT environments. They are inspired by previous
works, be they from IoMusT or network music performance [9, 13,
16, 17].

The first desired characteristic is perhaps themost sensitive point
of this work, and we call it heterogeneity. This condition indicates
that the system must work on multiple devices, with different func-
tionalities and operating systems. At an IoMusT environment, one
must also take into account the technical and musical capabilities

175

https://doi.org/10.1145/3478384.3478414
https://doi.org/10.1145/3478384.3478414


AM ’21, September 1–3, 2021, virtual/Trento, Italy Vieira and Schiavoni.

of the audience members, so that the ecosystem can accommodate
users with different skill levels.

This topic is related to transparency, which is concerned with
directly offering network resources as if they were a local service.
Consequently, a lay user might be able to use a remote resource
without having to deal with an overwhelmed network configuration.
Probably, an interesting Graphical Display should be enough to
drive the user to this set up. By detailing the information of each
musical thing present in the environment, it helps in to connect
devices process, as well as in the prevention and correction of
failures.

Share Information about the musical things inputs and outputs
can also be used to achieve heterogeneity since they can detail
technical and musical aspects. When publishing a resource on the
network, it is easier to find and connect with those who have some
affinity. To a lesser extent, this feature also helps with transparency,
since by indicating its properties, it is possible to discover or deduce
what the network consumption will be.

At last, integration with legacy software and hardware allows
each user to use the tool of their choice, even if it is obsolete or off
the production line. For this, there must be conversions between
different audio file formats and also the possibility of communica-
tion through the MIDI protocol, which is the first industry standard
for communication between different instruments.

The remainder of this paper is organized as follows. Section 2
presents the methodology used to obtain latency and jitters, two
inseparable aspects of network music practice, as well as a brief
explanation of the transmissionmedia that were used. Section 3 con-
ceptualizes how the Pipes-and-Filters architecture works and estab-
lishes correlations with musical practice, while Section 4 presents
the Sunflower, its layers, and functionalities. Section 5 shows the
tests performed and the results obtained. Finally, Section 6 presents
a discussion about the protocol and the IoMusT environment, high-
lighting which characteristics were achieved and the points that
could be improved, beyond exhibit summary conclusions about the
accomplishments of this work.

2 METHODOLOGY
To assess results on the functioning and behavior of a musical en-
vironment that operates on the network, it is important to measure
values related to latency and jitter. Latency is the time it takes for
information sent from the source host to reach the destination host,
added to the machine’s processing time, encoding and decoding
delays, queuing time, and propagating in both directions. In musical
practice, the delay of the sound itself must also be added. One of
the main sources that contribute to latency, for obvious reasons,
is the distance between the two points that want to communicate.
It is also worth highlighting the number of links that intermedi-
ate this connection, as well as their transfer and error rates, and
package size. Latency could be calculated as the average difference
between the relative and the expected time of the note, added to
the minimum latency time of the sound [14]. Equation 1 exposes
this definition in mathematical terms.

latency(∆t) =
1
n

n∑
i=1

(t(i) − expectedt (i) +mint ) (1)

Jitter, in like manner, is the measure of delay variation between
successive packets. It can also be seen that this delay can cause
uneven reception of data. Several factors contribute to this occur,
from the physical media for connection (twisted pair, coaxial cable,
fiber-optic cable, terrestrial radio spectrum, etc.), to the bandwidth
used, and the number of people connected to the network. For better
system performance, this value is ideally below 20 milliseconds. If
it exceeds 30 ms, the impact becomes noticeable by users, especially
in services that use audio and video [3, 4, 7]. Its value is the result
of the average latency deviation, as shown in the equation 2.

jitter =
1
n

n∑
i=1

|t(i) − ∆t | (2)

The connectionmedia used in this environment include localhost,
twisted-pair cable, and Wi-Fi. The localhost references itself, that
is, it forwards data and commands to where the connection was
initiated. This type of configuration is useful for testing, where
a machine’s resources mimic remote resources and the computer
acts as a loopback, indicating that processing starts and ends in
the same place. Also, the clock for logging the date and time of
packages will be the same for both sender and receiver.

A twisted-pair cable is used to connect two computers with-
out the need for interference from routers and switches. It has
intertwined wires to cancel electromagnetic interference when
transmitting signals. The unshielded model is currently the most
used, both in domestic and industrial networks, due to its low price
and ease of handling and installation. Care must be taken so that it
is not used near equipment that may generate magnetic fields.

Lastly, Wi-Fi predicts wireless communication. One of the ad-
vantages of this network structure is the easy connection, as it
allows different devices to exchange information with each other
quickly and simply. Mobility and stability are also benefits to be
highlighted.

3 PIPES-AND-FILTERS ARCHITECTURE
Pipes-and-Filters is a software architecture composed of filters, in-
dependent entities capable of processing input data to generate
new outputs. They are interconnected by pipes that act as buffers,
storing the data and leading them to the filters’ outlets. This ar-
chitecture is widely used in applications that deal with large data
flows or in models where little contextual information is needed. It
can also work together with other types of architectures [11, 21].

Filters are classified based on their behavior in the system and
can act as source, sink, or hybrid. It fits into the first category when
it is capable of generating data, such as Filter 1 in Figure 1, and
into the second when it only consumes resources from other filters,
such as number 4, in the same image. The third and last category
covers all those who perform both functions [12].

The pipes, as far as you are concerned, have only the responsibil-
ity to transfer data. Occasionally they need to buffer or synchronize
activities between filters, managing the amount of information
that can be exchanged between them, in order to avoid conflicts,
but they will never process or modify the data that pass through
them [12].

176



Sunflower: an environment for standardized communication of IoMusT AM ’21, September 1–3, 2021, virtual/Trento, Italy

Figure 1: Pipes-and-Filters example [2].

The advantages of thinking about architecture in this way range
from fast prototyping, reuse of filters, flexibility, relatively easy
implementation, and efficient processing.

3.1 Correlations between Pipes-and-Filters and
Music

The operation mode of Pipes-and-Filters in musical context is so
vast that it can be observed in several common tools for musical
practice [20]. An example is the traditional Moog synthesizers. Cre-
ated in 1964, they were initially monophonic and consist of separate
modules with specific functions, such as oscillating the frequency
of a note or applying reverb to it. These functions are analogous
to filters, capable of modifying the information that circulates in
the environment. Once changed, data flows were sent via cables
(which act in the same way as pipes) to the loudspeakers [15].

Other examples are the guitar stomp boxes and pedalboards.
The sound generated in the guitar pickups (source filter) are sent
through cables (pipes) to the pedals (filters), which apply changes
to the signal and send them to the speakers (sink filter), again using
cables (pipes).

This behavior can also be observed in audio devices present in
studio recordings or at live concerts, where various audio sources,
such as microphones and instruments, are connected via pipes
on different devices, such as mixers, speakers, and effect pedals.
Sometimes a patch bay is used to simplify the addition or removal of
new components. These devices can act as a source, sink, or hybrid
filters. Like those common to the Pipes-and-Filters architecture,
they also don’t know their adjacent peers.

Much of the musical creation made in programming languages
also follows this working model. Being more explicit in some cases
and less in others, Pipes-and-Filters is present in tools such as Pure
Data, FAUST, SuperCollider, and ChucK, for example.

4 SUNFLOWER IOMUST ENVIRONMENT
Sunflower is an environment that aims to facilitate the connec-
tion of musical things created by different manufacturers, with the
most diverse functionalities, data types, and protocols for transmit-
ting musical information. As an environment, it also has operating
protocols and a structure that supports all these devices. Such archi-
tecture has a way of functioning analogously to Pipes-and-Filters,
where musical things behave like filters, without prior knowledge
of their neighbors and their respective characteristics. They are also
classified as source, when they generate data, sink, when they only
consume them, or mixed filter, when they perform both functions.
The exchange of information takes place through pipes, which can
be both the cables used to connect instruments and the transmission
media over the network.

However, thinking about the system in this way generates three
main problems: i) great diversity in the data files that will travel
through this network; ii) possible occurrences of overloads, and
iii) data incompatibility can make filter reuse difficult. To alleviate
this problem, Sunflower was divided into layers, a very common
approach in Computer Science, used to isolate one layer from the
others, making maintenance, alterations, and even the removal
of one of them easier. Nevertheless, the environment shown here
behaves in a slightly different way, with a parallel operation that
separates the layers but allows them to interact with each other
when necessary. Each level was categorized according to its musical
things, data and protocols, culminating in a digital audio, graphic,
control, and management layer.

4.1 Digital Audio Layer
The digital audio layer, as the name implies, is responsible for
generating sound data to the environment, supporting audio in
Pulse-code Modulation (PCM) format. To ensure the system’s inter-
operability, it must provide information about musical things, such
as sample rate, bit depth, number of channels used for communica-
tion, ports used in the process, and so on.

This layer also supports a multitude of devices that simulate the
behavior of traditional instruments or allow their connection to
the environment. These gadgets were created in Pure Data patches
and represent the behavior of the audio player, drum machine,
loudspeaker, pitchfork, recorder, microphone, and guitar/bass. They
send data to the network using the User Datagram Protocol (UDP)
and support information in Musical Instrument Digital Interface
(MIDI) format.

An important feature of this layer is the ability to divide the
processing between its components, adding or removing them in a
way that guarantees system scalability and shared music creation.
This can lead to improvements in the interactions that take place
in artistic performances, in installations, in-studio recordings, in
the setup of bands, orchestras, and the like.

4.2 Graphic Layer
Another aspect that contributes to musical performances is the
graphic elements, ranging from videos captured in real-time that
highlight the behavior of musicians, to animations, figures, special
effects, and information that can be transmitted visually, corrobo-
rating both for the show’s aesthetics and for greater audience par-
ticipation. For this to occur, the image must go through an encoding
and decoding process, so that the visual data can be interpreted by
computer systems.

In this context, the graphical layer of Sunflower appears, respon-
sible for this procedure and for ensuring that the system handles
this type of data. To this end, the authors again resorted to the
multimedia capabilities of Pure Data, using the external Graphics
Environment for Multimedia (GEM) to capture and reproduce video
data from DVD players, webcams, laptops, or any other compat-
ible medium, besides performing synthesis and real-time image
processing.

177



AM ’21, September 1–3, 2021, virtual/Trento, Italy Vieira and Schiavoni.

4.3 Control Layer
Synchronization is an essential factor for devices that exchange
data over the network, as well as for musicians, who base their
actions on events that take place over some time. Consequently,
every musical thing present in this environment must behave in this
way, along with the capability to send/receive data and control from
the network. This implies a remote control, capable of changing
properties such as volume, frequency, beats per minute (BPM), and
so on. In Sunflower, this task is performed by the control layer,
in particular by the Open Sound Control protocol, thanks to its
ability to send UDP packets over the network without the need
for prior knowledge of the Internet Protocol (IP), channel, or path.
Moreover, it can encapsulate MIDI messages and also send them
over the network, contributing to system interoperability.

4.4 Management Layer
Inmusical presentations, it is common to see the presence of a sound
technician to provide support to the musicians. Similarly, computer
networks require an administrator, responsible for configuring and
maintaining this infrastructure and also providing support to users.
In the Sunflower ecosystem, the two roles are inseparable, with
the administrator being responsible for ensuring the usability of
the network and of the sound and graphic media. For this, it is
necessary that musical things can be mapped and that their main
features reach the administrator. Nevertheless, this task can be
complex, since many of the devices present in these contexts do not
even have a graphic interface, processing unit, or some input and
output port that provides some information. Additionally, events
open to the public are unpredictable in terms of the number of
participants, making device mapping even more difficult.

Oneway to deal with all these issues is throughmanaging objects
over the network, where the administrator can see who is connected
and what their main characteristics are, to connect only those that
can exchange data with each other. For this to occur, each musical
thing, when connecting to the network, must inform its ID number,
ports used in communication, accepted audio and/or video format,
and communication protocols, in order to facilitate the connection.
This operation is performed in Sunflower’s fourth and last layer,
the management layer, represented in Figure 2, which displays the
connected devices and their main properties.

The division into layers and its main elements are summarized
in Figure 3. It is important to highlight that the Pipes-and-Filters
model only inspired the behavior of Sunflower, as this is an ap-
proach used for software development and Sunflower is a network
communication structure. That said, data exchange takes place
through the client-server paradigm, where sink filters play a role
similar to that of clients, as they only consume data, and source
filters are the servers, responsible for providing the requested in-
formation. The advantage of thinking about the system in this way
is that a single musical thing can be connected to several other
devices, proposing a one-to-many mapping, a counterpoint to the
traditional model of connecting objects in musical environments,
which offers a wide domain of one-to-one mapping.

4.5 Feasible Scenarios
From the elucidation of how Sunflower works, its layers, data cate-
gories, and protocols it supports, some usage scenarios may become
possible. The following section, therefore, takes care of showing
them, portraying a Jam among a group of people, a studio based on
the principles of IoMusT, and an artistic presentation focused on
the interaction between musicians and audience members.

Scenario 1 - A jam session with acoustics and
musical things
The first scenario is a jam session that combines traditional in-
struments and electronic devices that exchange information over
the network. These instruments can be plugged into speakers or
patched, while users/musicians manipulate them from computer
systems.

The video can come from the cameras of these same computer
systems, such as smartphones and laptops, and sent over the net-
work to SmarTV’s or screens, which will show them to all partici-
pants. Still, images, videos, animations, and other graphic elements
can also be used to ensure an audiovisual experience. The video
layer can also be used to control other devices, triggering a se-
quence of notes on a synthesizer, changing the drum pattern and
BPM, and such tasks.

Some users can participate by controlling volume, recording,
instrument effects, and turning them on or off over the network.
They can also change the color patterns of the images, change their
resolution, format, etc.

A sound technician can be responsible for the management layer,
handling connections, allowing or disallowing certain users to com-
municate, as well as choosing which instruments and audio tracks
will be sent to the public address.

Scenario 2 - An IoMusT based studio
A second possible scenario is a studio that uses Sunflower concepts
to record solo artists, duos, and small groups, as well as orchestras
with the most varied instruments. For this, the recording interface
can adapt its size according to the amount of equipment connected
to it. Musicians can play together even if they are not in the same
physical location, and audio files can be recorded for later mixing
and mastering.

The graphic layer can provide technical information about the
network, such as which objects are connected and how to connect
to them, and also about the recording, such as displaying sheet
music, lyrics, and other information that helps in this process.

Pedal stomps can be reconfigured and controlled remotely or
via smartphones. Likewise, the sound engineer can define which
channels will be used and combine pre-recorded tracks with live
performance. Other musical parameters can be automatically cor-
rected by scripts or artificial intelligence systems. All of this will
be done at the control layer.

The management layer will be responsible for connecting the
instruments to the recording interfaces, controlling the graphical
information that will be displayed, which elements can receive
control, etc.

178



Sunflower: an environment for standardized communication of IoMusT AM ’21, September 1–3, 2021, virtual/Trento, Italy

Figure 2: Management screen indicating the properties of a musical thing connected to the environment.

envi.png

Figure 3: Sunflower’s layered division and its main features.

Scenario 3 - Live performances
Like the two feasible scenarios mentioned, this one that deals with
live presentations is also full of possibilities. Musicians can ex-
change data over the network instead of traditional audio systems,
and audience members can collaborate with the musical composi-
tion through their own devices.

The graphic layer can be used to convey participation informa-
tion to the audience, show videos, and animations that expand the
artistic capabilities of the performance, and again present some
musical aid such as lyrics, setlist, and sheet music to everyone
involved.

The control of the guitar pedals, lights, and screens can be done
by audiencemembers or by specialized technicians. In the sameway,
this layer can replace the traditional means of mixing and mastering
the sound with digitalized means controlled by the network.

The management layer can restrict access to certain functionality
and handle permissions in the environment, whether relating to
music or network access. At times, it blends in with the control
layer.

5 PRACTICE TESTS AND RESULTS
The tests were performed on an Acer Predator Helios 300 laptop
(computer A) for sending and receiving data, and a Dell Inspirion 14
3442 3000 series laptop (computer B), for receiving information only.
Computer A used Linux Ubuntu Studio 20.04 operating system,
while computer B used a Linux Ubuntu Studio 20.04 LTS. This
operating systemwas chosen for its easy and direct integration with
audio systems. In both cases, Pure Data came natively installed. A

Behringer C1 condenser microphone, a 6-string electric guitar, and
a Behringer U-Phoria UMC202HD audio interface were also used,
which allowed the connection of these devices to the computer.

To obtain the values related to latency and jitter in the network,
the Wireshark tool was used, capable of analyzing all the traffic and
organizing it according to the specificities of each machine involved
in the communication. The choice for this software is because it is
free, safe, and presents a graphical interface for data analysis.

The first test performed was on the localhost connection. From
the programming of the environment and preliminary tests, it was
observed that computer A performed better in this aspect. This
confirmed the expected fact that the physical configuration of the
machine (hardware) directly influences the performance of audio
transmission over the network.

Concerning latency and jitter, they were the same as the system
itself, regardless of network delay. This delay refers to the time the
system takes to pack the audio data, copy it into kernel space, and
copy it back into userspace, and unpack. The Pure Data average
delay was 1450 µs, but in practical terms, the audio came out almost
instantly on the speaker. As a result, the measured values were used
as intended values in the calculations performed for the connection
by twisted-pair cable and Wi-Fi.

As for the video data, as they use more computational resources,
it took a little longer to be displayed on the screen, but nothing that
compromised performance. The OSC control data, being small in
the number of bytes and being sent in a spaced way, exerted control
almost instantaneously, as did the audio. The times recorded for
each patch are displayed in the Table 1.

Using the network cable (Table 2), the general latency, that is,
the one that includes the values of the audio, video and OSC control
layers, was around 1310 µs, while the jitter was 0.4 µs. As for Wi-
Fi, it operated on the IEEE 802.11n standard, with a theoretical
transmission limit of 150 to 600 Mbps, using an Internet with a
bandwidth of up to 100 Mbps and a TP-Link AC 1200 Archer C5
router. The results obtained (Table 3) culminated in a latency of 5400
µs and a jitter of 3711 µs, confirming that the wired connection is
better than the wireless one. But even so, the values were within the
limits considered ideal, which do not compromise data exchange
or musical practice.

6 DISCUSSION AND CONCLUSION
The Internet of Musical Things area brings new perspectives to the
musical practice, allowing an interaction between different software
and computers in the performance of musical tasks. In this way,
a range of possibilities opens up that favor the emergence of new
ways of playing, composing, and recording.

179



AM ’21, September 1–3, 2021, virtual/Trento, Italy Vieira and Schiavoni.

Table 1: Results obtained from tests on localhost.

Musical thing Time
Audio player 0,017 µs

Audio player control Immediate
Drum Machine 0,017 µs

Drum Machine control Immediate
GuitarXBassRaw 0,017 µs

GuitarXBassRaw control Immediate
Loudspeaker Not applicable
Microphone 0,017 µs

Microphone control Immediate
Pitchfork 0,017 µs

Pitchfork control Immediate
Recorder Immediate

Recorder control Immediate
Video sender 1 µs

Video sender control Immediate
Volume Immediate

Volume control Immediate
Source: The Author.

Table 2: Results obtained from tests using twisted pair cable.

Musical thing Expected time Latency
Audio player 0,017 µs 31 µs

Audio player control Immediate 9 µs
Drum Machine 0,017 µs 120 µs

Drum Machine control Immediate 50 µs
GuitarXBassRaw 0,017 µs 600 µs

GuitarXBassRaw control Immediate 120 µs
Loudspeaker Not applicable Not applicable
Microphone 0,017 µs 200 µs

Microphone control Immediate 120 µs
Pitchfork 0,017 µs 450 µs

Pitchfork control Immediate 0,03 µs
Recorder Immediate Immediate

Recorder control Immediate 4 µs
Video sender 1 µs 270 µs

Video sender control Immediate 5 µs
Volume Immediate 200 µs

Volume control Immediate 200 µs
Source: The Author.

Despite all its advantages, IoMusT faces some challenges, the
main difficulties being the fact of dealing with the heterogeneity
and lack of standards of the devices that make up this environment.

Sunflower attacks this problem using an operating protocol based
on the Pipes-and-Filters architecture, where elements present in
the environment can establish communication with their neighbors
without the need to specify their IP address or their audio features,
using only the network multicast address to publish their resources.
These aspects contributed to the communication of audio and con-
trol flows beyond what is trivially used, and these points are the
novelties and contributions that this work provides to the area.

Table 3: Results obtained from tests using Wi-Fi.

Musical thing Expected time Latency
Audio player 0,017 µs 40 µs

Audio player control Immediate 0,9 µs
Drum Machine 0,017 µs 170 µs

Drum Machine control Immediate 50 µs
GuitarXBassRaw 0,017 µs 870 µs

GuitarXBassRaw control Immediate 220 µs
Loudspeaker Not applicable Not applicable
Microphone 0,017 µs 740 µs

Microphone control Immediate 200 µs
Pitchfork 0,017 µs 780 µs

Pitchfork control Immediate 90 µs
Recorder Immediate Immediate

Recorder control Immediate 0,9 µs
Video sender 0,001 ms 570 µs

Video sender control Immediate 10 µs
Volume Immediate 200 µs

Volume control Immediate 200 µs
Source: The Author.

From the characteristics initially desired for the environment, all
of them were achieved. The 16 patches that make up the Sunflower,
combined with its ability to receive the connection of numerous
instruments, confirmed the heterogeneity of the system. Likewise,
their playful and intuitive use allows different people, with different
goals and skill levels, to use them without major problems.

A graphical interface was displayed on the management layer.
Despite being simple and relying only on text, it can display the
main features of each patch, as well as identify them and report the
status of your connection. It displays input and output information,
fulfilling another initially intended requirement.

Integration with legacy software and hardware is possible thanks
to a patch that encapsulates MIDI information in the OSC protocol
and sends it to the network. For this, the tool must be connected to
the computer. But once this is done, there is a way to integrate it
into the network.

It is worth noting that although Sunflower uses Pure Data as an
audio engine and as a support tool for the features present in the
other layers, it is not just a set of patches for musical practice in
IoMusT contexts, but an environment composed of musical things,
protocols, and various types of data. In such a way, these patches
only served to simulate devices, leaving the main discussion in the
paper in charge of the structure of the Sunflower, in particular its
operation model based on the Pipes-and-Filters.

The development of a tool along these lines proved to be a com-
plex job, mainly because it involves knowledge from different areas,
such as computer music, the internet of things, computer networks,
signal processing, ubiquitous music, and distributed systems. Artis-
tic and social aspects must also be taken into account. The target
audience for this tool is formed by musicians, sound engineers,
composers, and members of the audience.

Usability, one of the most coveted aspects, was achieved through
the publication of resources and the view of the environment as a

180



Sunflower: an environment for standardized communication of IoMusT AM ’21, September 1–3, 2021, virtual/Trento, Italy

whole, through the management interface. Latency and jitter, which
are inseparable aspects of network musical practice, were within
a margin that did not compromise the functioning of the system.
However, the mandatory use of Pure Data patches and tests carried
out in a controlled environment makes it difficult to indicate an
absolute and conclusive result for Sunflower, requiring further tests
with a larger audience, when sanitary conditions permit.

Noting the importance of a friendly graphical interface, which
can encourage musicians and enthusiasts to experience musical
practice using network resources, the authors intend, for future
work, to develop a GUI that not only indicates which devices are in
the environment but also allows connection between them graph-
ically, instead of doing this only in Pure Data. It is also intended
to create a data conversion layer to allow more and more objects
with different characteristics to communicate with each other, and
also to assign “intelligence” to the devices, allowing them to store
information about the objects that they previously communicated
with.

Sunflower is still in a development stage, but it has shown
promise to meet both musical needs and those related to com-
munication over computer networks. Even so, the authors do not
intend to end the discussion of how the IoMusT communication
standard should be, in the same way, that they do not claim for
themselves the authority to say what should or should not be done
when planning an environment along these lines. It is just another
contribution that aims to facilitate the expansion of this field, as
well as of music and science.

ACKNOWLEDGMENTS
Authors would like to thanks to all ALICE members. The authors
would like also to thank the support of the funding agencies CNPq,
(Grant Number 151975/2019-1), CAPES (Grant Number 88887.486097.
2020-00), FAPEMIG and UFSJ.

REFERENCES
[1] Luigi Atzori, Antonio Iera, and Giacomo Morabito. 2010. The Internet of Things:

A Survey. Computer Networks (10 2010), 2787–2805. https://doi.org/10.1016/j.
comnet.2010.05.010

[2] A. Bijlsma, B. Heeren, E. Roubtsova, and S. Stuurman. 2011. Software Architecture.
Free Technology Academy, Washington, DC, USA.

[3] Blog Minha Conexão. 2020. O que é jitter e como ele influencia na sua conexão?
https://www.minhaconexao.com.br/blog/jitter/.

[4] Datapath.io. 2016. What is Acceptable Jitter? https://medium.com/@datapath_
io/what-is-acceptable-jitter-7e93c1e68f9b.

[5] Angelo Fraietta, Oliver Bown, and Sam Ferguson. 2020. Transparent Communica-
tionWithin Multiplicities. In 2020 27th Conference of Open Innovations Association
(FRUCT). 61–72. https://doi.org/10.23919/FRUCT49677.2020.9210989

[6] Neil Gershenfeld, Raffi Krikorian, and Danny Cohen. 2004. The Internet of
Things. Scientific American 291 (11 2004), 76–81. https://doi.org/10.1038/
scientificamerican1004-76

[7] Matt Grech. 2018. Acceptable Jitter & Latency for VoIP: Everything You Need to
Know. https://getvoip.com/blog/2018/12/20/acceptable-jitter-latency/.

[8] Stephan Haller. 2010. The Things in the Internet of Things. Bern University (01
2010).

[9] JosephMalloch, Stephen Sinclair, andMarcelo M.Wanderley. 2013. Libmapper: (A
Library for Connecting Things). In CHI ’13 Extended Abstracts on Human Factors
in Computing Systems (Paris, France) (CHI EA ’13). Association for Computing
Machinery, New York, NY, USA, 3087–3090. https://doi.org/10.1145/2468356.
2479617

[10] Benjamin Matuszewski. 2020. A Web-Based Framework for Distributed Music
System Research and Creation. Journal of the Audio Engineering Society 68 (10
2020). https://doi.org/10.17743/jaes.2020.0015

[11] Regine Meunier, Hans Rohnert, Frank Buschmann, Michael Stal, and Peter Som-
merlad. 1996. Pattern-Oriented Software Architecture, a System of Patterns: 1. Wiley
Press, Hoboken, NJ, USA. 476 pages.

[12] Jorge Ortega-Arjona. 2005. The Pipes and Filters Pattern. A Functional Paral-
lelism Architectural Pattern for Parallel Programming. In EuroPLoP’ 2005, Tenth
European Conference on Pattern Languages of Programs. Proceedings of Euro-
PLoP’ 2005, Tenth European Conference on Pattern Languages of Programs,
Irsee, Germany, 637–650.

[13] Flávio Schiavoni, Marcelo Queiroz, and Fernando Iazzetta. 2011. Medusa -A
Distributed Sound Environment.

[14] Flávio Luiz Schiavoni, Marcelo Queiroz, and Marcelo Wanderley. 2013. Alter-
natives In Network Transport Protocols For Aaudio Streaming Applications. In
Proceedings of the International Computer Music Conference. International Com-
puter Music Association, Perth, Australia, 193–200.

[15] F. Trocco and T. Pinch. 2004. Analog Days: The Invention and Impact of the Moog
Synthesizer. Harvard University Press, Boston, MA, USA. 368 pages.

[16] Luca Turchet. 2018. Smart Mandolin: Autobiographical Design, Implementation,
Use Cases, and Lessons Learned. In Proceedings of the Audio Mostly 2018 on Sound
in Immersion and Emotion (Wrexham, United Kingdom) (AM’18). Association
for Computing Machinery, New York, NY, USA, Article 13, 7 pages. https:
//doi.org/10.1145/3243274.3243280

[17] Luca Turchet, Francesco Antoniazzi, Fabio Viola, Fausto Giunchiglia, and György
Fazekas. 2020. The Internet of Musical Things Ontology. Journal of Web Semantics
60 (2020), 100548. https://doi.org/10.1016/j.websem.2020.100548

[18] L. Turchet, C. Fischione, G. Essl, D. Keller, and M. Barthet. 2018. Internet of
Musical Things: Vision and Challenges. IEEE Access 6 (2018), 61994–62017.
https://doi.org/10.1109/ACCESS.2018.2872625

[19] Rômulo Vieira, Mathieu Barthet, and Flávio Schiavoni. 2020. Everyday Use of
the Internet of Musical Things: Intersections with Ubiquitous Music. https:
//doi.org/10.5281/zenodo.4247759

[20] Rômulo Vieira and Flávio Luiz Schiavoni. 2020. In Proceedings of the Workshop
on Ubiquitous Music 2020. Zenodo, Porto Seguro, BA, Brasil, 109–120. https:
//doi.org/10.5281/zenodo.4247691

[21] Christian Wulf, N. Ehmke, and W. Hasselbring. 2014. Toward a Generic and
Concurrency-Aware Pipes & Filters Framework. In SoSP. University of Stuttgart,
Faculty of Computer Science, Electrical Engineering, and Information Technology,
Stuttgart, Germany, 70–82.

181

https://doi.org/10.1016/j.comnet.2010.05.010
https://doi.org/10.1016/j.comnet.2010.05.010
https://www.minhaconexao.com.br/blog/jitter/
https://medium.com/@datapath_io/what-is-acceptable-jitter-7e93c1e68f9b
https://medium.com/@datapath_io/what-is-acceptable-jitter-7e93c1e68f9b
https://doi.org/10.23919/FRUCT49677.2020.9210989
https://doi.org/10.1038/scientificamerican1004-76
https://doi.org/10.1038/scientificamerican1004-76
https://getvoip.com/blog/2018/12/20/acceptable-jitter-latency/
https://doi.org/10.1145/2468356.2479617
https://doi.org/10.1145/2468356.2479617
https://doi.org/10.17743/jaes.2020.0015
https://doi.org/10.1145/3243274.3243280
https://doi.org/10.1145/3243274.3243280
https://doi.org/10.1016/j.websem.2020.100548
https://doi.org/10.1109/ACCESS.2018.2872625
https://doi.org/10.5281/zenodo.4247759
https://doi.org/10.5281/zenodo.4247759
https://doi.org/10.5281/zenodo.4247691
https://doi.org/10.5281/zenodo.4247691

	Abstract
	1 Introduction
	2 Methodology
	3 Pipes-and-Filters Architecture
	3.1 Correlations between Pipes-and-Filters and Music

	4 Sunflower IoMusT Environment
	4.1 Digital Audio Layer
	4.2 Graphic Layer
	4.3 Control Layer
	4.4 Management Layer
	4.5 Feasible Scenarios

	5 Practice tests and Results
	6 Discussion and Conclusion
	Acknowledgments
	References

