Streaming objects and strings

André Damiao
University of Sao Paulo
Sao Paulo,
Brazil
andredamiao@usp.br

Abstract

In this paper we outline the development of a tool
for live coding which enable users to share Pure Data
patches in real time. The development outcome is a
piece called Tanto that mix live coding with shared
code in an audiovisual performance/installation.

Keywords
Live Coding, Network Music, Pure Data, BYOB

1 Introduction

Since the computer became a common tool
to musicians, computer networks became an
alternative to cooperation and collaboration
in music. Initiatives in music interaction
over computer networks has included network
music performances [Lazzaro and Wawrzynek,
2001][Young, 2001], Master classes [Young and
Fujinaga, 1999], audio through networks [Carot
and Werner, 2008], distributed ensemble [Ha-
jdu, 2003], instrument mapping [Malloch et al.,
2008] and laptop ensembles[Rohrhuber et al.,
2007].

Generally these interactions are all based on
musical content streaming. OSC, MIDI, au-
dio and video are the kind of content normally
shared through computer networks and several
tools were developed to do this job. Artis-
tics approaches have been developed since the
1970’s with The League of Automatic Music
Composers[Rohrhuber, 2007].

A common practice involving computer mu-
sic is live coding, as code could possibly be
the most direct interface to the logic of com-
puters. Thus, sharing code became a com-
mon practice, as it could enable a deeper and
faster level control of sound and other types of
data. Applications such as Republic! (Power-
Books Unplugged) and Co-audicle? (Wang and

"https://github. com/supercollider-quarks/
Republic
2http://audicle.cs.princeton.edu/

Flavio Luiz Schiavoni
Federal University of Sao Joao Del Rei
Minas Gerais,

Brazil,
fls@ime.usp.br

Cook) made this paradigm accessible to musi-
cians. This paper introduces a way to share
code in a visual programming language (VPL).
Our research includes a Pure Data3[Puckette,
2007] (aka PD) external object developed to re-
alize the task of realtime code sharing. We also
introduce the piece Tanto, which was developed
with the tools that will be described, and mod-
elled to it’s possibilities.

2 An external to Code sharing in
Pure Data

Once we decided to extend PD as a code sharing
tool, we took some project decisions to develop
it.

Our first development decision was what to
share. Since PD Pure Data programming can
be seen as a structured languages where sub-
patchs are like functions we decided to share
subpatchs. Thus, it is possible to keep a main
patch with local objects and connections and in-
stantiate the object sending and receiving with
a well defined code scope.

The second decision was about how to share.
We decided to use multicast addressed UDP
packets. We chose UDP because it is a lit-
tle bit faster than TCP [Schiavoni et al., 2013]
and Multicasting packets to reach every ma-
chine planned to receive the messages without
message copying.

We decided to divide the implementation
into two main objects: sendpatch and re-
ceivepatch. Both objects accepts network port
to send / receive packets configuration. This
port configuration can be used to send different
data to different computers and brings to the
user the possibility to have separated network
communication channels.

Our code is based on some PD functions that
are not exported on PD main library. The first
function is the patch analyser to find a target

3http://puredata.info



subpatch to send. The second one is the copy
/ paste PD internal functions that permits one
to catch a subpatch source code.

Once the subpatch is found and the code
is copied, we marshall it on network packets
to send it. Receiver unmarshall the received
packet, remove local subpatch if it exists, cre-
ate a new subpatch and paste the received code
on it.

3 TANTO:
BYOB+LiveCoding/Network

TANTO is a network live coding audio visual
piece inspired by the visual aesthetics of Bring
your Own Beamer (BYOB) events. The ele-
ments which define TANTO are the characteris-
tics of the objects that we developed (sendpatch
and receivepatch), a minimum of four comput-
ers, each computer needs a sound and visual
output of any type, and the composition made
of screens and projections where the code can be
seen. All other elements are open. It could be
played by one or many performers, which could
be in the same space or remote spaces, impro-
vised or notated, presented on a stage or in a
installation format and etc. One of the ques-
tions behind the development of TANTO was
how to mix the visual aesthetics BYOB with
the paradigms of live coding and network music.
BYOB became a common practice for video art
producers, such as Rafaél Rozendaal, in which
a group of people bring their own beamers and
show their material simultaneously with dozens
of other works, generating a vibrant and chaotic
landscape, in which there is also a strong as-
pect of community. Visually it resembles the
painting exhibitions from the late XIX century,
where numerous pictures were accumulated on
the walls, and the photography exhibitions by
Wolfgang Tillmann, in which larger landscapes
are formed by individual pictures.

Visualisation is central to live coding[McLean
et al., 2010], the use of projection in live cod-
ing is prevailing in performances, as an exten-
sion of the instrument. The appropriation of the
BYOB paradigm is a form of creating a “visual
polyphony”, which can be understood syntacti-
cally, by reading the code, and as visual music,
because as the software does not just send the
content of each subpatch, but the window posi-
tion and size, it is possible to create movements
and different settings of brightness for each pro-
jection.

As it was mentioned before the audio may be

reproduced by any sort of output: laptop speak-
ers, studio monitors, guitar amplifiers, head-
phones, etc. Each computer should be close
to it’s sound source, so it would possible to
create a clear connection between sound, im-
age and code. The disposition of the equip-
ment in space may vary considering the situa-
tion in which TANTO is presented, but if there
are sound sources that are very still, too con-
trasting in volume, or even with use of head-
phones, it would be recommended that the au-
dience could circulate around the work during
performance. The suggestion of using different
types of speakers was influenced by the origi-
nal Acousmonium, in which there was a great
variety of speakers, and composers could cre-
ate different timbres through the spacialization
of mono or stereo files. We believe that a live
coder could do the same using this configura-
tion. The piece was created concomitantly with
the development of the external objects, what
enabled us to adapt the performance and the
code to necessities and problems that appeared
during the process.

4 Conclusion

Sharing code can have much more potential
than sharing other types of data related to
sound. Thus, this process contributes to the cre-
ation of more complex and permeable algorith-
mic music practices. Implementing this tool in a
visual programming environment gives a wider
access to artists and musicians. We understand
that the objects sendpatch and receivepatch
could be used not only for artistic purposes but
also for educational and collaborative code de-
velopment situations, making the process of ex-
changing patches much quicker. Concerning the
performance TANTO, we think that the blend
between live coding sessions and BYOB events
can lead to very amusing code jams.

The developed PD library is an open source
project available on the project website?.

References

Alexander Car6t and Christian Werner. 2008.
Distributed network music workshop with
soundjack. In In proceedings of the Tonmeis-
tertagung, Leipzig, Germany.

Georg Hajdu. 2003. Quintet.net - a quintet on
the internet. In Proceedings of International
Computer Music Conference, page 315318,
Singapore.

‘http://sourceforge.net/p/pdsendpatch/



John Lazzaro and John Wawrzynek. 2001. A
case for network musical performance. In Pro-
ceedings of the 11th international workshop
on Network and operating systems support for
digital audio and video, NOSSDAV ’01, pages
157-166, New York, NY, USA. ACM.

Joseph Malloch, Stephen Sinclair, and
Marcelo M. Wanderley. 2008. Computer mu-
sic modeling and retrieval. sense of sounds.
chapter A Network-Based Framework for Col-
laborative Development and Performance of
Digital Musical Instruments, pages 401-425.
Springer-Verlag, Berlin, Heidelberg.

Alex McLean, Dave Griffiths, Nick Collins,
and Geraint Wiggins. 2010. Visualisation of
live code. In Proceedings of the 2010 Interna-
tional Conference on Electronic Visualisation
and the Arts, EVA’10, pages 26-30, Swinton,
UK, UK. British Computer Society.

Miller Puckette. 2007. The Theory and Tech-
nique of Electronic Music. World Scientific

Publishing Company, Incorporated, Hacken-
sack, N.J.

Julian Rohrhuber, Alberto de Campo, Re-
nate Wieser, Jan-Kees van Kampen, and
Hannes Ho, Echo Hoand Hoélzl. 2007. Mu-
sic in the Global Village: International Con-
ference on Network Music Composition and
Performance. Budapest.

Julian Rohrhuber. 2007. Network Music.
Cambridge University Press Cambridge ;
New York.

Flavio Luiz Schiavoni, Marcelo Queiroz, and
Marcelo Wanderley. 2013. Alternatives in
network transport protocols for audio stream-
ing applications. In Proceedings of the Inter-
national Computer Music Conference, Perth,
Australia.

John Young and Ichiro Fujinaga. 1999. Piano
master classes via the internet. In In Proceed-
ings of International Computer Music Con-
ference, pages 519-522, Beijing, China.

John P. Young. 2001. Using the Web for
live interactive music. In Proceedings of Inter-

national Computer Music Conference, pages
302-305, Habana, Cuba.



