
Medusa - A Distributed Sound Environment

Flávio Luiz SCHIAVONI1 and Marcelo QUEIROZ1 and Fernando IAZZETTA2

Computer Science Department1, Music Department2

University of São Paulo
Brazil

{fls,mqz}@ime.usp.br, iazzetta@usp.br

Abstract

This paper introduces Medusa, a distributed sound
environment that allows several machines connected
in a local area network to share multiple streams
of audio and MIDI, and to replace hardware mixers
and also specialized multi-channel audio cables by
network communication. Medusa has no centralized
servers: any computer in the local environment may
act as a server of audio/MIDI streams, and as client
to remote audio/MIDI streams. Besides allowing au-
dio and MIDI communication, Medusa acts as a dis-
tributed sound environment where networked sound
resources can be transparently used and reconfigured
as local resources. We discuss the implementation
of Medusa in terms of desirable features, and report
user experience with a group of composers from the
University of São Paulo/Brazil.

Keywords

Network music, Jack, SCTP.

1 Introduction

With the growth of the Internet and the rise
of broadband home links, the association be-
tween music making and networked computers
had a global acceptance. With music distribu-
tion via streaming, computers became the new
sound players, and also the new way of dis-
tributing music on a global scale. This kind
of musical application of computers is not con-
cerned about latency issues because commu-
nication is totally asynchronous. The inter-
est in synchronous audio communication came
with the idea of putting this technology to new
uses [Wright, 2005].
Synchronous networked music communica-

tion research started with music performance
experiments years ago. Some early network mu-
sic performances are reported for instance in
Bolot and Garćıa [Bolot and Garćıa, 1996] as
early as 1996, using TCP, UDP and RTP to
route voice signals; see [Weinberg, 2002], [Re-
naud et al., 2007] and [Barbosa, 2003] for sur-
veys on network music performance.

A tool for network music interaction might be
used to promote interaction on a global or a lo-
cal scale. In a wide area network such as the In-
ternet, the main concern is the attempt to bring
people together across physical space, whereas
in a local area network context, where partici-
pants are usually in the same room, the network
can be used to promote a rich range of interac-
tion possibilities, by using the virtual communi-
cation link as an extension of the shared phys-
ical space [Wright, 2005]. Technologically me-
diated communication brings significant contri-
butions to musical interaction even when people
are face-to-face, for instance by allowing much
more control in processing and combining sound
sources within a room with almost no interfer-
ence of room acoustics.
These new possibilities can be explored by

musicians, allowing them to create new musi-
cal approaches to composition and performance,
by exploring new ways of interacting that ex-
ceed physical proximity and maximize musical
possibilities. There is some expectation about
what could or would be done with music when
this kind of free networked intercommunication
is allowed [Cáceres and Chafe, 2009a]. As noted
by [Chafe et al., 2000], “once [the delay issue]
can be pushed down to its theoretical limit, it
will be interesting to see what musical possibil-
ities can be made of truly interactive connec-
tions”.

1.1 Goals and related work

This paper introduces Medusa, an audio/MIDI
communication tool for local networks whose
design is based on a set of desirable features,
which have been collected from several previous
works in Network Music Performance, Interac-
tive Performance and Distributed Systems.
The main goal is to unleash audio/MIDI com-

munication between computers and software ap-
plications on a local area network without com-
plex configurations or difficult set-ups. This is

149



done by mapping each sound source (or sound
sink) in the network to a local name that the
user may connect to any input (or output)
of audio/MIDI software applications. The fo-
cus on local area networks allows the map-
ping of musician’s expectations based on lo-
cal/physical/acoustical musical interaction to
new desirable features of the system, and then
the mapping of these desirable features to de-
tails of the software model.
Several audio processing platforms allow

some form of network communication of audio
and MIDI data. PureData, for instance, allows
the user to send and receive UDP messages be-
tween several Pd instances using netPD 1. Su-
perCollider 2 is implemented with a client-server
architecture and also allows network communi-
cation. The goal of Medusa, on the other hand,
is to allow communication also between different
software tools and across computer platforms.
Some related work address the problem

of synchronous music communication between
networked computers, such as OSC [Lazzaro
and Wawrzynek, 2001], NetJack [Carôt et
al., 2009], SoundJack [Carôt et al., 2006],
JackTrip [Cáceres and Chafe, 2009b; Cáceres
and Chafe, 2009a], eJamming [Renaud et al.,
2007], Otherside [Anagnostopoulos, 2009] and
LDAS [Sæbø and Svensson, 2006], including
commercial applications such as ReWire from
Propellerhead [Kit, 2010].
Although some of the goals and features of

these applications may overlap with those of
Medusa, none of them addresses the issues of
peer-to-peer topology for audio and MIDI com-
munication in the specific context of Local Area
Networks. The OSC standard, for instance,
uses symbolic messages (e.g. MIDI) to con-
trol remote synthesizers over IP [Lazzaro and
Wawrzynek, 2001]; Otherside is another exam-
ple of a tool which works only with MIDI. While
Medusa is based on peer-to-peer connections,
NetJack works with a star topology and mas-
ter/slave approach [S.Letz et al., 2009], and so
do LDAS, SoundJack and JackTrip. Some of
these tools allow WAN connections, which leads
to a different application context with several
other kinds of problems like NAT routing, pack-
age loss, greater latency and need for audio com-
pression, and at the same time they do not fully
exploit the specificities of LAN connections, for
instance reliable SCTP routing. Besides, one

1http://www.netpd.org
2http://supercollider.sourceforge.net/

of Medusa’s central goals is to go beyond audio
and MIDI routing, by adding on-the-fly remote
node reconfiguration capabilities that may help
environment setup and tuning.

1.2 Design based on desirable features

In this paper, we will discuss an architectural
approach to the design of a local network mu-
sic tool which is based on desirables features,
either found in previous work from the litera-
ture or in actual usage with a group of volun-
teer musicians. We will also present a proto-
type that was implemented to support some of
the features mapped so far. The current list of
desirable features guiding the development of
Medusa is the following:

• Transparency

• Heterogeneity

• Graphical display of status and messages

– Latency and communication status

– Network status

– Input/Output status

– IO stream amplitudes

• Multiple IO information types

– Audio

– MIDI

– Control Messages

– User text messages

• Legacy software integration [Young, 2001]

– Audio integration

– MIDI integration

– Control integration

• Sound processing capabilities [Chafe et al.,
2000]

– Master Mixer [Cáceres and Chafe,
2009a]

– Silence Detection [Bolot and Garćıa,
1996]

– Data compression [Chafe et al., 2000]

– Loopback [Cáceres and Chafe, 2009a]

Transparency and Heterogeneity are de-
sirable features borrowed from the field of dis-
tributed systems. Transparency’s main idea is

150



to provide network resources as if they were lo-
cal resources in a straightforward way. Hetero-
geneity means that the system should be able
to run on several system configurations within
the network, including different OS and dif-
ferent hardware architectures, in an integrated
manner. These concerns also appear in re-
lated works [Wright, 2005; Cáceres and Chafe,
2009a], and helped in the choice of a develop-
ment framework (including programming lan-
guage, API, sound server, etc.)
The features listed under Graphical dis-

play of status and messages were collected
via experimentation with potential users (vol-
unteer musicians), in a cyclic process of update
and feedback of early versions of the prototype.
These features are directly related to the graph-
ical user interface.
The need to work with both MIDI and Au-

dio was also presented by volunteer musicians,
as they frequently combine audio connections
with the use of remote MIDI controllers. Con-
trol Messages are used to access a remote ma-
chine, for instance to reconfigure its audio con-
nections during a musical performance. Also
user text messages may be used for various
purposes including machine reconfiguration and
performance synchronization.
The need to integrate the system with legacy

softwares is evident as every user is used to
work with particular sound processing applica-
tions. Like Heterogeneity, this feature also de-
termines the choice of a development API.
Sound processing capabilities include a

set of tools that relate to the issues of latency,
bandwidth and heterogeneity. These features
will be further discussed in the Sound Com-
munication section.

2 Architectural Approach

The system presupposes a set of computers in
a local area network that may share audio and
MIDI channels. In the context of this paper,
the group of all machines connected to Medusa
is called environment and every machine in
the environment is called a node. A node
that makes resources available to the environ-
ment, such as audio or MIDI streams, is called
a source, and a node that uses environmental
resources is called a sink; every machine can
act simultaneously as source and sink. Every
node has independent settings, and each user
can choose which resources he or she wants to
make available to the environment, and also

which environmental resources he or she wants
to use, and when. The following subsections dis-
cuss the architectures of each node and of the
environment.

2.1 Node Architecture

The node architecture is a multi-layered model
that uses the following components:

• GUI: used for configuring the node and in-
teracting with the environment. Environ-
ment interaction includes adding/removing
local audio/MIDI ports and environmental
node search and connection;

• Model: used to represent the node config-
uration, including audio and network con-
figurations and their current status.

• Control: is responsible for integrating
sound resources and network communica-
tion.

• Network communication: used for data and
control communication with the environ-
ment;

• Sound resources: used to map local and en-
vironmental audio resources.

The GUI is the user interaction layer. It is
used to set up the system, to create audio chan-
nel resources, to connect to the environment
and to remote resources. The GUI brings some
level of transparency to the environment and
makes the tool easier to use, by hiding the com-
plexity of actual network connections and net-
work and audio settings. [Cáceres and Chafe,
2009b] already noted that usually most of the
time is spent adjusting the connections rather
than playing music, and our GUI was designed
trying to alleviate this problem. The feature
of graphical display of status and mes-
sages is implemented by this layer. The sta-
tus of the network and active communication
channels are presented as indicators that pro-
vide visual feedback, such as Latency, Network
status, Input/Output status and Signal Ampli-
tude, which help the user in interacting with the
network music environment.
The Model layer represents each node cur-

rent status at any given moment. It contains the
network configuration, sound resources and cod-
ing details such as number of channels, sample
rate, local buffer size and other relevant infor-
mation. The model is encapsulated in messages
to preserve consistency between machines. The

151



set of models of all nodes represents the current
environment status. Messages will be further
explained in section 2.3.
TheControl layer is the main part of the sys-

tem. It is divided in three components: Sound
Control, Network Control and Environ-
ment Control. These controls hide the imple-
mentation details from upper-level components,
by taking care of audio synchronization, sound
processing and message exchange to keep the
model representation up-to-date across nodes.
The Environment Control maintains an envi-
ronment node list with all details of the nodes
known at each moment. The Sound Control en-
capsulates the Sound Communication layer, al-
lowing the sound server to be changed at any
time. The Network control encapsulates the
network servers and clients allowing a server
reimplementation without the need for major
code rewriting.
The Network Communication layer is re-

sponsible for the low-level maintenance of the
network infrastructure. It connects sources and
sinks to audio and MIDI streams and man-
ages control messages within the environment.
Broadcast control messages can be used to sync
all nodes in the environment. Plain text mes-
sages between users can help them to set up
his/her node or to exchange any other kind of
information in a human-readable way. The net-
work communication layer has three servers:

• UDP server: send/receive broadcast mes-
sages;

• TCP server: send/receive unicast mes-
sages;

• SCTP server: exchange audio/MIDI
streams.

The Sound Communication layer is re-
sponsible for interacting locally with the sound
server in each node, creating a virtual layer
that provides transparent access to remote au-
dio and MIDI streams, integrating the tool with
other legacy sound softwares, while hiding
the details of network communication. The
idea behind integration with legacy softwares
is to avoid having any type of signal process-
ing units within the communication tool, leav-
ing those tasks to external softwares through a
sound server like Jack or SoundFlower. The ar-
chitecture can integrate, via external software,
many other sound processing capabilities that
may be applied before sending a stream to the

network or upon receiving a stream and before
making it locally available. Signal processing
can be used, for instance, to translate streams
with different audio codings, by adjusting sam-
ple rate, sample format, buffer size and other
coding details between different user configura-
tions [Chafe et al., 2000], thus providing hetero-
geneous and transparent access to remote data.
Signal processing units may also include:

Master Mixer: allows the user to indepen-
dently control the volume of network audio
and MIDI inputs, and also to mute them.
It allows groups of network channels to be
mixed before being connected to a sound
application, and to create mixed output
channels consisting of several local sound
streams. For added versatility the mixer
has a gain that exceeds 100% (or 0 dB)
with respect to the incoming signal level,
allowing the user to boost weak signals or
even distort regular signals up to 400% (or
12 dB) of their original amplitude level.

Data compression: in order to minimize
transmission latency, data compression can
be applied to the signal, reducing the
amount of audio data transmitted. Codecs
like CELT [Carôt et al., 2009] can be
used to reduce the amount of data with-
out significant audio loss. Audio compres-
sion also reduces transmission bandwidth,
which allows more audio channels to be
sent over the same transmission link. On
the other hand, compressing a signal in-
troduces an algorithmic latency due to the
encode/decode cycle, which is why some
systems prefer to use uncompressed au-
dio [Cáceres and Chafe, 2009a]. We be-
lieve this decision is better left to the user,
and the communication tool should have an
option for turning compression on/off and
also for tweaking compression parameters,
allowing a finer control over sound quality
and algorithmic latency.

Silence Detection: silence detection algo-
rithms might be used to avoid sending
“empty” audio packets to the network, us-
ing up transmission bandwidth needlessly.
This feature introduces a non-deterministic
element in bandwidth usage, and so its use
is subject to user discretion.

152



2.2 Environment architecture

The environment architecture represents how
node instances interact with each other within
the client-server model proposed. Node interac-
tion includes audio/MIDI streaming, and con-
trol communication via messages used to reset
the environment or to change its current status.
To do this, SCTP is used to deal with streaming
and TCP and UDP servers deal with messages
for environment control.
Control messages (see figure 1) are XML-

based action commands that are managed by
the control/model layer components; their re-
sults are displayed in the GUI. Messages are
used to update and extend the local model, for
instance by adding new information about re-
mote machines and streams, removing streams
for users that logged out, etc. The choice be-
tween UDP or TCP corresponds to sending a
message to all nodes (broadcast) or to send a
message to a specific node (unicast).

Figure 1: XML Message

2.3 Environment Messages

The tool has messages that inform the local
node about the current state of the environ-
ment. A report is sent to all users whenever
a new user connects to the environment, when
a user connects to a remote output port, or
when any kind of environment configuration is
changed. Messages may be of Broadcast (B) or
Unicast (U) communication type:

HI GUYS (B): This message is sent when a
node enters the environment. It is com-
posed by the IP address, network port, au-
dio ports, MIDI ports and name of the user.
When a machine receives this message it
will add a new node to the environment
node list and send back HI THERE and
LOOP BACK messages.

HI THERE (U): This message is sent when a
machine receives a HI GUYS message. It
sends information back in order to help the
new node to update its environment node
list. The fields of this message are the same
of HI GUYS. Whenever a machine receives

this message, it will add or replace the cor-
responding node of the environment list,
and send back a LOOP BACK message.

LOOP BACK (U): After receiving a HI-GUYS
or HI-THERE message, the node uses this
message to measure the latency between
the corresponding pair of nodes. This mes-
sage contains the sender and target node
names and a time-stamp field with the lo-
cal time at the sender node. Whenever a
machine receives a LOOP BACK message
it will first check for the sender: if the local
machine is the sender, it will calculate the
latency to the target node by halving the
round-trip time; otherwise it will only send
the message back to the sender.

BYE (B): This message is used to inform all
nodes that a machine is leaving the envi-
ronment. When a machine receive a BYE
message it will disconnect the correspond-
ing audio sinks (if any) and remove the
node from the node environment list.

CONNECTED/DISCONNECTED (U): This
pair of messages inform a node that a sink
is connected to one of its sound resources
(passed as an argument), or that a sink just
disconnected from that sound resource.

CHAT (B): Used to exchange human-readable
messages within the environment. It may
help with synchronization (of actions, for
instance) and node setup.

CONNECT ME/DISCONNECT ME (U):
Ask a node to connect to (or to disconnect
from) a source. These are useful to allow
configuration of the environment in a
transparent way.

ADD PORT/REMOVE PORT (U): Ask a
node to add or remove a audio/MIDI port.
This message contains the sound port type
(audio or MIDI) and the sound port name,
and is used for remote management.

CONNECT PORT/DISCONNECT PORT
(U): Ask a node to change audio connec-
tions in a local sound route. It may be
used for remote configuration: with this
message one node might totally reconfigure
another node’s audio routing.

START TRANSPORT/STOP TRANSPORT
(B): The transport message in the Jack
sound server is used to start all players,
recorders and other software that respond

153





and outputs are transparent and can be made
using Jack’s interface qJack as in figure 5.

4 Conclusions and future work

One relevant subjective conclusion at this point
is the recognition that an user-friendly, graphi-
cal tool for network music may encourage mu-
sicians to experiment and play using networks.
The possibilities of using a local area network
for musical performance go beyond the common
use of computers in live electronics, by allowing
the distribution of computer processing and mu-
sical tasks among several performers and a het-
erogeneous group of computers and sound pro-
cessing software. Network group performance
on wireless connections is a fertile ground for
musicians, composers and audio professionals.
On the technical side, we observed that SCTP
is a reliable protocol for sound exchange of a
small number of audio channels, with unnotice-
able latency and without packet loss on a local
area network.
The next step in the validation of this tool

is to measure latency, transmission bandwidth
and network performance with different trans-
mission links such as crossover cables, wire-
less connections, 10/100 Hubs and others. We
would also like to have Medusa available to
other platforms like PulseAudio, ALSA, Por-
tAudio, ASIO and SoundFlower.
In order to allow remote connections outside

of the Local Area Network (e.g. Internet), we
would like to implement audio/MIDI commu-
nication using other transport protocols such
as UDP and TCP in addition to SCTP. Since
the SCTP protocol avoids packet loss, stick-
ing to SCTP when going from LAN to WAN
would make latency go way beyond an accept-
able range.

5 Acknowledgements

The authors would like to thank the support of
the funding agencies CNPq and FAPESP - São
Paulo Research Foundation (grant 2008/08623-
8).

References

Ilias Anagnostopoulos. 2009. The otherside
web-based collaborative multimedia system.
In LAC, editor, Proceedings of Linux Audio
Conference 2009, pages 131–137.

Alvaro Barbosa. 2003. Displaced sound-
scapes: A survey of network systems for mu-

sic and sonic art creation. Leonardo Music
Journal, 13:53–59.

Jean-Chrysostome Bolot and Andrés Vega
Garćıa. 1996. Control mechanisms for packet
audio in the internet. In INFOCOM ’96.
Fifteenth Annual Joint Conference of the
IEEE Computer Societies. Networking the
Next Generation. Proceedings IEEE, pages
232 – 239 vol.1.

A. Carôt, U. Kramer, and G. Schuller. 2006.
Network music performance (NMP) in nar-
row band networks. In Proceedings of the
120th AES Convention, Paris, France.

A. Carôt, T. Hohn, and C. Werner. 2009.
Netjack–remote music collaboration with
electronic sequencers on the internet. In In
Proceedings of the Linux Audio Conference,
page 118, Parma, Italy.

Chris Chafe, Scott Wilson, Al Leistikow,
Dave Chisholm, and Gary Scavone. 2000.
A simplified approach to high quality music
and sound over IP. In In Proceedings of the
COST G-6 Conference on Digital Audio Ef-
fects (DAFX-00, pages 159–164.

Juan-Pablo Cáceres and Chris Chafe. 2009a.
Jacktrip: Under the hood of an engine
for network audio. In Proceedings of Inter-
national Computer Music Conference, page
509–512, San Francisco, California: Interna-
tional Computer Music Association.

Juan-Pablo Cáceres and Chris Chafe. 2009b.
Jacktrip/Soundwire meets server farm. In In
Proceedings of the SMC 2009 - 6th Sound and
Music Computing Conference, pages 95–98,
Porto, Portugal.

Hewlett-Packard Development Company HP,
2008. SCTP Programmer’s Guide.

JACK. 2011. JACK: Connecting a world of
audio.

ReWire Software Development Kit. 2010.
Propellerhead software. Stockholm, Sweden.

John Lazzaro and John Wawrzynek. 2001. A
case for network musical performance. In In
Proceedings of the 11th international, pages
157–166. ACM Press.

Corporation Nokia. 2011. Qt Software.

L. Ong and J. Yoakum. 2002. An Intro-
duction to the Stream Control Transmission
Protocol (SCTP). RFC 3286 (Informational),
May.

155



Alain B. Renaud, Alexander Carôt, and Pe-
dro Rebelo. 2007. Networked music perfor-
mance : State of the art. In Proceedings AES
30th International Conference, Saariselkä,
Finland.

S.Letz, N.Arnaudov, and R.Moret. 2009.
What’s new in JACK2? In LAC, editor,
Proceedings of Linux Audio Conference 2009,
page 1.

Asbjørn Sæbø and U. Peter Svensson. 2006.
A low-latency full-duplex audio over IP
streamer. In Proceedings of the Linux Au-
dio Conference, pages 25–31, Karlsruhe, Ger-
many.

Gil Weinberg. 2002. The aesthetics, history,
and future challenges of interconnected mu-
sic networks. In Proceedings of International
Computer Music Conference, pages 349–356.

Matthew Wright. 2005. Open Sound Control:
an enabling technology for musical network-
ing. Org. Sound, 10:193–200.

John P. Young. 2001. Using the Web for
live interactive music. In Proc. International
Computer Music Conference, pages 302–305,
Habana, Cuba.

156


